Echoes of ECOs: gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

photo credit: magazines, sean winters

Echoes of ECOs: gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palenzuela, Paolo Pani
Paper Phys. Rev. D 94, 084031 (2016) | 2016-30-08

Abstract

Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the post-merger ringdown waveform of exotic ultracompact objects is initially identical to that of a black-hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i)~we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii)~we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes" of the modes of vibration associated with the photon sphere; (iii)~we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black-holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black-hole. This suggests that --~in some configurations~-- the coalescence of compact boson stars might be almost indistinguishable from that of black-holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.